Home
Class 12
MATHS
int(dx)/((x^2+4x+5)^2)i se q u a lto 1...

`int(dx)/((x^2+4x+5)^2)i se q u a lto` `1/2[tan^(-1)(x+1)+("x"+2)/("x"^2+4"x"+5)]+"c"` `1/2[tan^(-1)(x+2)-("x"+2)/("x"^2+4"x"+5)]+"c"` `1/2[tan^(-1)(x+1)-("x"+2)/("x"^2+4"x"+5)]+"c"` `1/2[tan^(-1)(x+1)+("x"+2)/("x"^2+4"x"+5)]+"c"`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/((x^2+4x+5)^2) is equal to 1/2[tan^(-1)(x+1)+("x"+2)/("x"^2+4"x"+5)]+"c" 1/2[tan^(-1)(x+2)-("x"+2)/("x"^2+4"x"+5)]+"c" 1/2[tan^(-1)(x+1)-("x"+2)/("x"^2+4"x"+5)]+"c" 1/2[tan^(-1)(x+2)+("x"+2)/("x"^2+4"x"+5)]+"c"

int(dx)/((x^(2)+4x+5)^(2)) is equal to (1)/(2)[tan^(-1)(x+1)+(x+2)/(x^(2)+4x+5)]+c(1)/(2)[tan^(-1)(x+2)-(x+2)/(x^(2)+4x+5)]+c(1)/(2)[tan^(-1)(x+1)-(x+2)/(x^(2)+4x+5)]+c(1)/(2)[tan^(-1)(x+1)+(x+2)/(x^(2)+4x+5)]+c

int(dx)/(x^(2)+2x+2) equals (A) x tan^(-1)(x+1)+C (B) tan^(-1)(x+1)+C

int(x^2+2)/(x^4+4)dx is equal to (a) 1/2tan^(-1)((x^2-2)/(2x))+c (b) 1/2tan^(-1)((2x)/(x^2+2))+c (c) 1/2tan^(-1)((2x)/(x^2-2))+c (d) 1/2tan^(-1)(x^2+2)+c

tan ^ (-1) (x + (2) / (x))-tan ^ (-1) ((4) / (x)) = tan ^ (-1) (x- (2) / (x))

int(x)/(4+x^(4))dx is equal to (1)/(4)tan^(-1)x^(2)(b)(1)/(4)tan^(-1)((x^(2))/(2))(c)(1)/(2)tan^(-1)((x^(2))/(2))(d) none of these

If I = int tan^(-1)((2x)/(1-x^(2)))*dx then I-2x*tan^(-1)x =

(d)/(dx)[tan^(-1)((6x)/(1+7x^(2)))]+(d)/(dx)[tan^(-1)((5+2x)/(2-5x))]=