Home
Class 11
PHYSICS
A rod of length L and cross section area...

A rod of length L and cross section area A has variable density according to the relation `rho (x)=rho_(0)+kx` for `0 le x le L/2` and `rho(x)=2x^(2)` for `L/2 le x le L` where `rho_(0)` and k are constants. Find the mass of the rod.

Promotional Banner

Similar Questions

Explore conceptually related problems

A thin rod AB of length a has variable mass per unit length rho_(0) (1 + (x)/(a)) where x is the distance measured from A and rho_(0) is a constant. Find the mass M of the rod.

A rod of length L is placed along the x-axis between x=0 and x=L . The linear mass density (mass/length) rho of the rod varies with the distance x from the origin as rho=a+bx . Here, a and b are constants. Find the position of centre of mass of this rod.

A rod of length L is placed along the x-axis between x=0 and x=L . The linear mass density (mass/length) rho of the rod varies with the distance x from the origin as rho=a+bx . Here, a and b are constants. Find the position of centre of mass of this rod.

A rod of length L is placed along the X-axis between x=0 and x=L . The linear density (mass/length) rho of the rod varies with the distance x from the origin as rho=a+bx. a.) Find the SI units of a and b b.) Find the mass of the rod in terms of a,b, and L.