Home
Class 12
MATHS
माना d/(dx)f(x)=(e^(sinx))/x, x gt 0 यदि...

माना `d/(dx)f(x)=(e^(sinx))/x, x gt 0` यदि `int_1^4(2e^(sinx^2))/xdx=f(k)-f(1)` , तब k का एक सम्भव मान होगा

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx) F(x) = (e^(sin x))/(x) , x gt 0 . If int_(1)^(4) (2e^(sin x^(2)))/(x) dx=F(K)-F(1) , then one of the possible values of K is :

Let d/(dx)F(x)=(e^(sinx))/x . x lt0 . If int_(1)^(4)(2e^(sinx^(2)))/xdx=F(k)-F(1) then find the possible value of k .

Let d/(dx) (F(x))= e^(sinx)/x, x>0 . If int_1^4 (2e^sin(x^2))/x dx = F(k)-F(1) , then possible value of k is:

Let (d)/(dx) F(x)=(e^(sin x))/(x), x gt 0 , If int_(1)^(4) (3)/(x) e^(sin x^(3))dx=F(k)-F(1) , then one of the possible value of k is -

Let (d)/(dx) F(x)=(e^(sin x))/(x), x gt 0 , If int_(1)^(4) (3)/(x) e^(sin x^(3))dx=F(k)-F(1) , then one of the possible value of k is -

Let d/(dx) (F(x))= e^(sinx)/x, x>0 . If int_1^4 2e^sin(x^2)/x dx = F(k)-F(1) , then possible value of k is:

Fundamental theorem of definite integral : (d)/(dx)(F(x))=(e^(sinx))/(x),ngt0 . If int_(1)^(4)(2e^(sinx^(2)))/(x)dx=F(k)-F(1) then the possible value of k is……..