Home
Class 12
MATHS
|[x, a, a], [a, x, a], [a, a, x]| =(x +2...

`|[x, a, a], [a, x, a], [a, a, x]| =(x +2)(x-a)^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

|[x+4,2x,2x] , [2x,x+4,2x] , [2x,2x,x+4]|=(5x+4)(x-4)^2

By using properties of determinants, prove that |[x+4,2x,2x],[2x,x+4,2x],[2x,2x,x+4]|=(5x+4)(4-x)^2

Prove that: |[x+4,2x,2x],[2x,x+4,2x],[2x,2x,x+4]|=(5x+4)(4-x)^2 .

By using properties of determinants, show that : |[x+4,2x,2x],[2x,x+4,2x],[2x,2x,x+4]| = (5x+4)(4-x)^2

|(x+4, 2x, 2x),(2x, x +4, 2x),(2x, 2x ,x+4)| = (5x + 4)(4 - x)^(2) .

|[x+lambda, 2x, 2x], [2x, x+lambda, 2x], [2x, 2x, x+lambda]| =(5x+ lambda)(lambda-x)^(2)

Prove the following : [[x+4,2x,2x],[2x,x+4,2x],[2x,2x,x+4]]-(5x+4)(4-x)^2

By using properties of determinats. Prove that- |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)| = (5x + 4) (x - 4)^2

Show that |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x+4)(4-x)^(2)

The factor of x^8 + x^4 +1 are (A) (x^4 + 1 - x^2), (x^2 +1 +x), (x^2 + 1 - x ) (B) x^4 + 1 -x^2 , (x^2 - 1 + x), (x^2 +1 + x) (C ) (x^4 - 1 + x^2, (x^2 - 1 + x), (x^2 + 1 + x) (D) (x^4 -1 + x^2), (x^2 + 1 - x), (x^2 + 1 +x)