Home
Class 12
MATHS
The equation cos^(4)x-(a+2)cos^(2)x-(a+3...

The equation `cos^(4)x-(a+2)cos^(2)x-(a+3)=0` possesses a solution if

Promotional Banner

Similar Questions

Explore conceptually related problems

Determine all value of 'a' for which the equation cos^(4) x-(a+2) cos^(2)x-(a+3)=0 , possess solution. Find the solutions.

Determine all value of 'a' for which the equation cos^(4) x-(a+2) cos^(2)x-(a+3)=0 , possess solution.

Determine all value of 'a' for which the equation cos^(4) x-(a+2) cos^(2)x-(a+3)=0 , possess solution.

Determine all value of 'a' for which the equation cos^(4) x-(a+2) cos^(2)x-(a+3)=0 , possess solution.

The equation 4sin^(2)x+4sin x+a^(2)-3=0 possesses a solution if 'a' belongs to the interval

The equation cos^(4)x-(lambda+2)cos^(2)x-(lambda+3)=0 have a real solution if

Determine all possible values of 'a' for which the equation cos^4 x - (a +2) cos^2 x-(a+3) = 0 will have real solution

The equation "sin"^(4) x - (k +2)"sin"^(2) x - (k + 3) = 0 possesses a solution, if

The equation "sin"^(4) x - (k +2)"sin"^(2) x - (k + 3) = 0 possesses a solution, if