Home
Class 12
MATHS
If z1 and z2 are two complex number such...

If `z_1` and `z_2` are two complex number such that `|z_1|<1<|z_2|` then prove that `|(1-z_1 bar z_2)/(z_1-z_2)|<1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1 and z_2 are two complex numbers such that |z_1|lt1lt|z_2| then prove that |(1-z_1barz_2)/(z_1-z_2)|lt1

If z_1 and z_2 are two complex numbers such that |z_1|lt1lt|z_2| then prove that |(1-z_1barz_2)/(z_1-z_2)|lt1

If z_1 and z_2 are two complex numbers such that |\z_1|=|\z_2|+|z_1-z_2| show that Im (z_1/z_2)=0

If z_(1) and z_(2) are two complex numbers such that |z_(1)|= |z_(2)|+|z_(1)-z_(2)| then

If z_(1) and z_(2) are two complex numbers such that |z_(1)|= |z_(2)| , then is it necessary that z_(1) = z_(2)

If z_(1) and z_(2) are two complex number such that |z_(1)|<1<|z_(2)| then prove that |(1-z_(1)bar(z)_(2))/(z_(1)-z_(2))|<1

If z_(1) and z_(2) are two complex numbers such that |z_(1)| lt 1 lt |z_(2)| , then prove that |(1- z_(1)barz_(2))//(z_(1)-z_(2))| lt 1

If z_(1) and z_(2) are two complex numbers such that |z_(1)| lt 1 lt |z_(2)| , then prove that |(1- z_(1)barz_(2))//(z_(1)-z_(2))| lt 1

Statement-1 If|z_1| and |z_2| are two complex numbers such that |z_1|=|z_2|+|z_1-z_2|, then Im(z_1/z_2)=0 and Statement-2: arg(z)=0 =>z is purely real