Home
Class 12
MATHS
If y = 2 ^(ax ) and (dy)/(dx) =log 256 a...

If `y = 2 ^(ax ) and (dy)/(dx) =log 256 at x =1, ` then a =

Promotional Banner

Similar Questions

Explore conceptually related problems

if y=2^(ax) and (dy)/(dx)=log256 at x=1 then the value of a is

If y = 2^(log x) , then (dy)/(dx) is

If y = e^(ax) Show that x(dy)/(dx) = y log y .

Find (dy)/(dx) : y = log _(2)x

if y=log x^(x) prove that (dy)/(dx)=1+log x

1.If y = (log x)3 then dy/dx=

(x log x ) (dy)/(dx) + y = 2 log x

log ((dy)/(dx)) =2x +3y