Home
Class 12
MATHS
যদি sin^-1x+sin^-1y+sin^-1z=(3pi)/(2) হয়...

যদি `sin^-1x+sin^-1y+sin^-1z=(3pi)/(2)` হয় তাহলে `x^9+y^9+z^9-(1)/(x^9y^9z^9)` এর মান হল―

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^-1x+sin^-1y+sin^-1z=(3pi)/2 , then the value of x^9+y^9+z^9-1/(x^9y^9z^9) is equal to

If sin^-1x + sin^-1 y + sin^-1z = (3pi)/2, then the value of x^9 + y^9 + z^9 - (1)/(x^9y^9z^9) is equal to

IF sin ^(-1)x + sin ^(-1) y+ sin ^(-1)""z=(3pi)/(2), then the value of x^(9) +y^(9) +z^(9)-""(1)/(x^(9)y^(-9)z^(9)) is equal to -

If sin^-1x+sin^-1y+sin^-1z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2, find the value of x^2+y^2+z^2

If sin^(-1) x + sin^(-1) y + sin^(-1) z =(3pi)/2 , then : x^100+ y^100 + z^100 -9/(x^101 + y^101 + z^101) is :

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) , then then the value of (x+y+z) is -

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2