Home
Class 10
MATHS
गुणनखण्ड प्रमेय लागु करके बताइए कि स्थित...

गुणनखण्ड प्रमेय लागु करके बताइए कि स्थिति में `g(x),p(x)` का गुणनखण्ड है या नहीं :
`p(x)=2x^(3)+x^(2)-2x-1,g(x)=x+1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Divide p(x)=x^3+3x^2+3x+1 by g(x)=x+2

divide p(x)=x^3+3x^2+3x+1 by g(x)= x+2

Divide p(x) by q(x) p(x)=2x^(2)+3x+1,g(x)=x+2

Divide P(x)=x^6+3x^2+10 by g(x)=x^3+1

Divide p(x) by g(x) , where p(x) = p(x)=x+3x^2-1 and g(x)=1+x

Using factor theorem , show that g (x) is a factor of p(x) , when p(x)=2x^(3)+7x^(2)-24x-45,g(x)=x-3

If g(x)=x+1 and p(x)=2x^3+x^2-2x+1 then (p(x))/(g(x))=?

Divide p(x) by g(x), where p(x) = x+3x^(2) -1 and g(x) = 1+x .

Check whether p(x) is a multiple of g(x) or not: p(x)=2x^3-11x^2-4x+5'g(x)=2x+1

Use the factor theorem, to determine whether g(x) is a factor of p(x) in each of the following cases : (i) p(x)=2x^(3)+x^(2)-2x-1,g(x)=x+1 (ii) p(x)=x^(3)+3x^(2)+3x+1,g(x)=x+2 (iii) p(x)=x^(3)-4x^(2)+x+6,g(x)=x-3