Home
Class 12
MATHS
The locus of points of intersection of t...

The locus of points of intersection of the tangents to `x^(2)+y^(2)=a^(2)` at the extremeties of a chord of circle `x^(2)+y^(2)=a^(2)` which touches the circle `x^(2)+y^(2)-2ax=0` is/are :

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the point of intersection of the tangents at the extremities of a chord of the circle x^(2)+y^(2)=r^(2) which touches the circle x^(2)+y^(2)+2rx=0 is

The locus of the point of intersection of the tangents at the extremities of a chord of the circle x^(2)+y^(2)=r^(2) which touches the circle x^(2)+y^(2)+2rx=0 is

Locus of the point of intersection of tangents at the extremeties of a chord of a circle x^(2)+y^(2)=a^(2) which touch the circle x^(2)+y^(2)-2ax=0 is

The locus of the point of intersection of the tangents at the extermities of a chord of the circle x^2+y^2=b^2 which touches the circle x^2+y^2-2by=0 passes through the point

The locus of the point of intersection of the tangents at the extermities of a chord of the circle x^2+y^2=b^2 which touches the circle x^2+y^2-2by=0 passes through the point

The locus of the point of intersection of the tangents at the extremities of the chords of the ellipse x^(2)+2y^(2)=6 which touch the ellipse x^(2)+4y^(2)=4, is x^(2)+y^(2)=4(b)x^(2)+y^(2)=6x^(2)+y^(2)=9(d) None of these