Home
Class 12
MATHS
Let the function f(x)=x^(2)+x+sinx- cosx...

Let the function `f(x)=x^(2)+x+sinx- cosx+log(1+|x|)` be defined on the interval [0,1]. The odd extension of f(x) to the interval [-1,1] is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let the function f(x)=4 sinx+3 cos x+ log (|x|+sqrt(1+x^(2))) be defined on the interval [0,1]. The odd extension of f(x) to the inteval [-1,1] is

Let the function f(x)=4 sinx+3 cos x+ log (|x|+sqrt(1+x^(2))) be defined on the interval [0,1]. The odd extension of f(x) to the inteval [-1,1] is

Let the function f(x)=3x^(2)-4x+5log(1+|x|) be defined on the interval [0,1]. The even extension of f(x) to the interval [0,1]. The even extension of f(x) to the interval [-1,1] is

Let the function f(x)=3x^(2)-4x+8log(1+|x|) be defined on the interval [0,1]. The even extension of f(x) to the interval [0,1]. The even extension of f(x) to the interval [-1,1] is

Let f(x)=3sin^(3)x+4x-sin|x|+log(1+|x|) beidd euen adefined on the interval [0,1]. The even extensionof f(x) to the interval [-1,0] is

Let the function f(x)=x^(2)+x+sin x-cos x+log(1+|x|) be defined on the interval [0,1]. Define functions g(x) and h(x) in [-1,0] satisfying g(-x)=-f(x) and h(-x)=f(x)AA x in[0,1]

Let f(x)=x^(2)+x be defined on the interval [0,2). Find the odd and even extensions of f(x) in the interval [-2,2] .

Let the function f(x)=x^2+x+sin x-cosx+log(1+|x|) be defined on the interval [-1,1] .Define functions g(x) and h(x) in[-1,0] satisfying g(-x)=-f(x) and h(-x)=f(x)AAx in [0,1]dot

Let the function f(x)=x^2+x+s in x-cosx+log(1+|x|) be defined on the interval [0,1] .Define functions g(x)a n dh(x)in[-1,0] satisfying g(-x)=-f(x)a n dh(-x)=f(x)AAx in [0,1]dot

f(x)=log x, interval [1,e]