Home
Class 12
MATHS
underset(n to oo)lim (1^(2)+2^(2)+3^(2)+...

`underset(n to oo)lim (1^(2)+2^(2)+3^(2)+...+n^(2))/(n^(3))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(n to oo)lim (1^(3)+2^(3)+3^(3)+...+n^(3))/(n^(4))=

underset(n to oo)lim (2^(n)-n)/(2^(n))=

underset(n to oo)lim (2^(n)-1)/(3^(n)+1)=

underset(n to oo)lim (n(1^(3)+2^(3)+...+n^(3))^(2))/((1^(2)+2^(2)+...+n^(2))^(3))=

Evaluate : underset(n to oo) lim[((1+1^(2)/n^(2)))(1+(2^(2))/(n^(2)))(1+(3^(2))/(n^(2)))…(1+(n^(2))/(n^(2)))]^((1)/(n))

Find underset(n to oo)lim ((2n^(3))/(2n^(2)+3)+(1-5n^(2))/(5n+1))

underset(n to oo)lim (1+2+3+...+n)/(n^(2))=

lim_(n to oo) (1^(2)+2^(2)+3^(2)+…+n^(2))/(n^(3)) is equal to

underset(n to oo)lim {1/(1-n^(2))+(2)/(1-n^(2))+....+(n)/(1-n^(2))} is equal to

underset(n to oo)lim 1/n^(4) [1^(2)+(1^(2)+2^(2))+....+(1^(2)+2^(2)+...+n^(2)]=