Home
Class 11
MATHS
Prove that: cot^2A-tan^2A=4\ cot2A cos e...

Prove that: `cot^2A-tan^2A=4\ cot2A cos e c2A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cot^(2)A-tan^(2)A=4cos2A cos ec2A

cot^(2)A-tan^(2)A=4cot2A cos ec2A

Prove that: cot2A + tanA= cotA - cot 2A

Prove that: cot2A + tanA= cotA - cot 2A

Prove that tan A - cot A =-2 cot2A

Prove that cotA-tanA=2cot2A and deduce that tan alpha+2tan2alpha+4tan4alpha+8cot8alpha=cot alpha

Prove: cot^2A cos e c^2B-cot^2B cos e c^2A=cot^2A-cot^2B .

Prove that: sin^(2) A tan A + cos^(2) A cot A + 2 sin A cos A= tan A + cot A

Prove that: tan(A/2)+ cot(A/2)=2 "cosec"A

Prove: tan^2A+cot^2A=sec^2A cos e c^2A-2