Home
Class 12
MATHS
Let g(x)=f(tanx)+f(cotx),AAx in ((pi)/(2...

`Let g(x)=f(tanx)+f(cotx),AAx in ((pi)/(2),pi).` If `f''(x)lt0,AAx in ((pi)/(2),pi), then `

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sinx ,AAx in [0,pi/2],f(x)+f(pi-x)=2,AAx in (pi/2,pi)a n df(x)=f(2pi-x),AAx in (pi,2pi), then the area enclosed by y=f(x) and the x-axis is pis qdotu n i t s (b) 2pis qdotu n i t s 2s qdotu n i t s (d) 4s qdotu n i t s

If f(x)=sinx ,AAx in [0,pi/2],f(x)+f(pi-x)=2,AAx in (pi/2,pi]a n df(x)=f(2pi-x),AAx in (pi,2pi], then the area enclosed by y=f(x) and the x-axis is (a) pi sq dot units (b) 2pi sq dot units (c) 2 sq dot units (d) 4 sq dot units

If f(x)=sinx ,AAx in [0,pi/2],f(x)+f(pi-x)=2,AAx in (pi/2,pi]a n df(x)=f(2pi-x),AAx in (pi,2pi], then the area enclosed by y=f(x) and the x-axis is (a) pi sq dot units (b) 2pi sq dot units (c) 2 sq dot units (d) 4 sq dot units

Let f(x) = (1-tanx)/(4x-pi),x ne (pi)/(4), x in [0, (pi)/(2)] , if f(x) is continuous in [0, (pi)/(4)] , then f((pi)/(4)) is :

Let f(x)=(1-tan x)/(4x-pi),x!=(pi)/(4),x in[0,(pi)/(2)], If f(x) is continuous in [0,(pi)/(4)], then find the value of f((pi)/(4))

Let f'(sinx)lt0andf''(sinx)gt0,AAx in (0,(pi)/(2)) and g(x)=f(sinx)+f(cosx), then find the interval in which g(x) is increasing and decreasing.

Let f'(sinx)lt0andf''(sinx)gt0,AAx in (0,(pi)/(2)) and g(x)=f(sinx)+f(cosx), then find the interval in which g(x) is increasing and decreasing.

Let f'(sinx)lt0andf''(sinx)gt0,AAx in (0,(pi)/(2)) and g(x)=f(sinx)+f(cosx), then find the interval in which g(x) is increasing and decreasing.