Home
Class 11
MATHS
(log2 x)^4-(log(1/2) (x^5/4))^2-20log2 x...

`(log_2 x)^4-(log_(1/2) (x^5/4))^2-20log_2 x+148<0`

Promotional Banner

Similar Questions

Explore conceptually related problems

In the equality (log_2x)^4-(log_(1//2)"x^5/4)^2-20log_2x+148lt0 holds true in (a,b), where a,b in N. Find the value of ab (a+b).

In the equality (log_2x)^4-(log_(1//2)"x^5/4)^2-20log_2x+148lt0 holds true in (a,b), where a,b in N. Find the value of ab (a+b).

In the equality (log_2x)^4-(log_(1//2)"x^5/4)^2-20log_2x+148lt0 holds true in (a,b), where a,b in N. Find the value of ab (a+b).

In the equality (log_2x)^4-(log_(1//2)"x^5/4)^2-20log_2x+148lt0 holds true in (a,b), where a,b in N. Find the value of ab (a+b).

(log_(2)x)^(2)+4(log_(2)x)-1=0

2log_(4)(4-x)=4-log_(2)(-2-x)

if x >0 , and log_2 x + log_2 (x^(1/2)) + log_2 (x^(1/4))+ ------------ = 4 then x equals :

if x >0 , and log_2 x + log_2 (x^(1/2)) + log_2 (x^(1/4))+ ------------ = 4 then x equals :

The equation x^(3/4(log_(2)x)^(2)+log_(2)x-5/4)=sqrt(2) has

The sum of all the roots of the equation log_(2)(x-1)+log_(2)(x+2)-log_(2)(3x-1)=log_(2)4