Home
Class 9
MATHS
log(x) -log(2x-3)=1 then x = ?...

log(x) -log(2x-3)=1 then x = ?

Promotional Banner

Similar Questions

Explore conceptually related problems

Match the column Column I, Column II If x=3,t h e n(log)_4(2(log)_3(1+(log)_2(1+3Log_3x))) is equal to, p. 3 If x=100 , then 3^((log)_3logsqrt(x))-logx+log^2x is equal to, q. 1 If one of the root of the equation 2((log)_xsqrt(5))^2-3(log)_x(a)+1=0 is sqrt(5) , then the other root is, r. 1/2 If (log)_2(4. 3^x-6)-(log)_2(9^x-6)=1, then x is equal to, s. 5

If 9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

If 9^("log"_3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

If log x - (2)/(3) log x = 1, then x = ______.

Differentiate log(3x+2)-x^(2)log(2x-1) with respect to x:

If f(x)=tan^(-1)[(log((e )/(x^(2))))/(log (ex^(2)))]+tan^(-1)[(3+2 log x)/(1-6 log x)] then the value of f''(x) is

2log x-log(x+1)-log(x-1)=

Let f(x) = ln(x-1)(x-3) and g(x) = ln(x-1) + ln(x-3) then,

If log ((x+y)/3)=1/2 (log x +log y) then find the value of x/y+y/x

If log ((x+y)/3)=1/2 (log x +log y) then find the value of x/y+y/x