Home
Class 12
MATHS
Find the maximum value of f(x)=(40)/(3...

Find the maximum value of
`f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum value of f(x) = x^(3)(2-x)^(4)

For which value of x, function f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60) has maximum and minimum ?

Find the maxima and minimum value of the function y = 40/(3x^(4)+ 8x^(3)- 18x^(2) +60 .

Find the maxima and minimum value of the function y = 40/(3x^(4)+ 8x^(3)- 18x^(2) +60 .

Discuss the extremum of f(x)=(40)/(3x^(4)+8x3-18x^(2)+60)

Statement -1 The maximum value of f(x)=1/(3x^4+8x^3-18x^2+60) "is"1/(53) Statement -2 : The function g(x) = 1/(f(x)) attains its minimum value at x=1 and x=-3

Statement -1 The maximum value of f(x)=1/(3x^4+8x^3-18x^2+60) "is"1/(53) Statement -2 : The function g(x) = 1/(f(x)) attains its minimum value at x=1 and x=-3

Find both the maximum value and the minimum value of f(x)=3x^(4)-8x^(3)+12x^(2)-48x+25 on the interval [0, 3].

Find the absolute maximum and absolute minimum values of f(x)=3x^(4)-8x^(3)+12x^(2)-48x+25 in [0,3]