Home
Class 12
MATHS
if the two circles x^2 + y^2 + 2gx + ...

if the two circles
` x^2 + y^2 + 2gx + 2fy = 0 and `
`x^2 + y^2 + 2g'x + 2 f'y = 0 `touch each other then show that f'g = fg'

Promotional Banner

Similar Questions

Explore conceptually related problems

If two cricles x^2 + y^2 + 2gx + 2fy = 0 and x^2 +y^2 + 2g'x + 2f'y = 0 touch each other, then

Show that the two circles x^(2) + y^(2) + 2gx + 2fy = 0 and x^(2) + y^(2) + 2g'x+ 2f'y = 0 will touch each other if f'g = g'f.

If the circles x ^(2) +y^(2) +2gx +2fy =0 and x ^(2) +y^(2) +2g'x+ 2f'y=0 touch each other then-

If circles x^(2) + y^(2) + 2g_(1)x + 2f_(1)y = 0 and x^(2) + y^(2) + 2g_(2)x + 2f_(2)y = 0 touch each other, then

If circles x^(2) + y^(2) + 2g_(1)x + 2f_(1)y = 0 and x^(2) + y^(2) + 2g_(2)x + 2f_(2)y = 0 touch each other, then

If two circle x^(2)+y^(2)+2gx +2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then proove that f'g =fg'.

If two circle x^(2)+y^(2)+2gx +2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then proove that f'g =fg'.

If two circle x^(2)+y^(2)+2gx +2fy=0 and x^(2)+y^(2)+2g'x+2f'y=0 touch each other then proove that f'g =fg'.