Home
Class 12
MATHS
The locus of the point (l,m) if the line...

The locus of the point (l,m) if the line lx+my=1 touches the circles `x^(2)+y^(2)=a^(2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of th point (l,m). If the line lx+my=1 touches the circle x^(2)+y^(2)=a^(2) is

The locus of th point (l,m). If the line lx+my=1 touches the circle x^(2)+y^(2)=a^(2) is

The locus of the point (l, m) so that lx+my=1 touches the circle x^(2)+y^(2)=a^(2) is :a) x^(2)+y^(2)-ax=0 b) x^(2)+y^(2)=1/a^(2) c) y^(2)=4ax d) x^(2)+y^(2)-ax-ay+a^(2)=0

The locus of the point (h,k) for which the line hx+ky=1 touches the circle x^2+y^2=4

Prove that an angle between the pair of the lines joining the origin to the points of interesection of the line lx+my=1 with the curve x^(2)+y^(2)=a^(2) is 2cos^(-1)((1)/(a sqrt(l^(2)+m^(2))))

If the line lx+my+n=0 touches the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . Then

If the line lx+my+n=0 touches the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . Then

If the line lx+my+n=0 touches the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . Then

If the straight line lx+my+n=0 touches the : circle x^(2)+y^(2)=a^(2) , show that a^(2)(l^(2)+m^(2))=n^(2)

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then