Home
Class 12
MATHS
if logx/(b-c)=logy/(c-a)=logz/(a-b) then...

if `logx/(b-c)=logy/(c-a)=logz/(a-b)` then `x^ay^bz^c` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If log x/(b-c) =logy/(c-a) = logz/((a-b) then the value of xyz is

If (logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b) , then which of the following is/are true?

If (logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b) , then which of the following is/are true? z y z=1 (b) x^a y^b z^c=1 x^(b+c)y^(c+b)=1 (d) x y z=x^a y^b z^c

If (logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b) ,then the value of x^(b+c).y^(c+a).z^(a+b) is

If (logx)/(a - b) = (logy)/(b-c) = (log z)/(c -a) , then xyz is equal to :

If (logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b) prove that (a) x^(a)y^(b)z^(c )=1 (b) x^(b+c).y^(c+a).z^(a+b)=1 (c ) x^(b^(2)+bc+c^(2) . y^(c^(2)+ca+a^(2)) . z^(a^(2)+ab+b^(2)) =1