Home
Class 12
MATHS
Evaluate int(0)^(oo)[(3)/(x^(2)+1)]dx ...

Evaluate
`int_(0)^(oo)[(3)/(x^(2)+1)]dx`
where [.] denotes the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_(-5)^(5)x^(2)[x+(1)/(2)]dx (where [.] denotes the greatest integer function).

Evaluate: int_(0)^((5 pi)/(12))[tan x]dx, where [.] denotes the greatest integer function.

int_(0)^(oo)[(3)/(x^(2)+1)]dx, where [.] denotes the greatest integer function,is equal to (A)sqrt(2) (B) sqrt(2)+1(C)(3)/(sqrt(2))(D) infinite

Evaluate int_(1)^(e^(6))[(logx)/(3)]dx , where [**] denotes the greatest integer function.

rArrint_(0)^(oo) [(2)/(e^(x))]dx (where [*] denotes the greatest integer function) equals

rArrint_(0)^(oo) [(2)/(e^(x))]dx (where [*] denotes the greatest integer function) equals

Evaluate: int_(0)^(2)[x^(2)-x+1]dx, where [.] denotos the greatest integer function.

Evaluate int_(0)^(1.5) x[x^2] dx , where [.] denotes the greatest integer function

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to