Home
Class 12
MATHS
If y=sin (2sin^-1x), Prove that, (1-x^2)...

If y=sin `(2sin^-1x)`, Prove that, `(1-x^2)(d^2y)/(dx^2)=xdy/dx-4y`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=cos (2 sin^-1 x), prove that (1-x^2)(d^2y)/(dx^2)+xdy/dx+4=0

If y=sin(2sin^-1x) show that (1-x^2)(d^2y)/(dx^2)= xdy/dx-4y

If e^y(x+1)=1, show that (d^(2y))/(dx^2)=((dy)/(dx))^2 If y=sin(2sin^(-1)x), show that ((1-x^2)d^(2y))/(dx^2)=x(dy)/(dx)-4y

If y= sin (2 sin^-1 x) , prove that: (1 - x^2 ) (d^2y/dx^2) - x(dy/dx) + 4y = 0 .

If y=sin^(-1) x, prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0

If logy=sin^-1x , show that, (1-x^2)(d^2y)/(dx^2)=xdy/dx+y .

If y=sin(m sin^-1x) , Hence prove that (1-x^2)(d^2y)/dx^2-xdy/dx+m^2y=0 .

If y=(sin^-1x)^2 , then show that (1-x^2)(d^2y)/(dx^2)-xdy/dx=2

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2) If y=sin(2sin^(-1)x), show that ((1-x^(2))d^(2y))/(dx^(2))=x(dy)/(dx)-4y