Home
Class 11
MATHS
If x/alpha+y/beta=1 touches the circle x...

If `x/alpha+y/beta=1` touches the circle `x^2+y^2=a^2` then point `(1/alpha , 1/beta)` lies on (a) straight line (b) circle (c) parabola (d) ellipse

Promotional Banner

Similar Questions

Explore conceptually related problems

If x/alpha+y/beta=1 touches the circle x^2 +y^2=a^2 , then point (1/alpha,1/beta) lies on a/an

I If a point (alpha, beta) lies on the circle x^2 +y^2=1 then the locus of the point (3alpha.+2, beta), is

If a point (alpha, beta) lies on the circle x^(2)+y^(2)=1 , then the locus of the point, (3 alpha+2, beta) is

I If a point (alpha,beta) lies on the circle x^(2)+y^(2)=1 then the locus of the point (3 alpha.+2,beta), is

The points (2 ,1)(3 ,-2) and (alpha ,beta) form a triangle of area 4 square units.If the point (alpha, beta) lies on the line y=x+3 then the value of alpha+beta is (are)

The locus a point P(alpha,beta) moving under the condition that the line y=alphax+beta is a tangent to the hyperbola x^2/a^2-y^2/b^2=1 is (A) a parabola (B) an ellipse (C) a hyperbola (D) a circle

The locus a point P(alpha,beta) moving under the condition that the line y=alphax+beta is a tangent to the hyperbola x^2/a^2-y^2/b^2=1 is (A) a parabola (B) an ellipse (C) a hyperbola (D) a circle