Home
Class 12
MATHS
Let f (x) and g (x) be two differentiabl...

Let `f (x) and g (x)` be two differentiable functions, defined as:
`f (x)=x ^(2) +xg'(1)+g'' (2) and g (x)= f (1) x^(2) +x f' (x)+ f''(x).`
The value of `f (1) +g (-1)` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x) and g (x) be two differentiable functions, defined as: f (x)^(2)=x ^(2) +xg'(1)+g'' (2) and g (x)= f(1)x^(2) +x f' (x)+ f''(x). The number of integers in the domain of the function F(x)= sqrt(-(f(x))/(g (x)))+sqrt(3-x) is:

Let f (x) and g (x) be two differentiable functions, defined as: f (x)=x ^(2) +xg'(1)+g'' (2) and g (x)= f(1)x^(2) +x f' (x)+ f''(x). The number of integers in the domain of the function F(x)= sqrt(-(f(x))/(g (x)))+sqrt(3-x) is:

Let f(x)=x^(2)+xg'(1)+g''(2) and g(x)=f(1).x^(2)+xf'(x)+f''(x) then

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f''(x). The value of f(3) is

f(x) = x^(2)+xg'(1) +g''(2) and g(x) =f(1)x^2+xf'(x)+f''(x) The value of g(0) is

f(x) = x^(2)+xg'(1) +g''(2) and g(x) =f(1)x^2+xf'(x)+f''(x) The value of f(3) is

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The value of g(0) is

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The value of g(0) is

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The value of g(0) is

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The value of g(0) is