Home
Class 12
MATHS
यदि x = 2at, y = at^(2), तो x = (1)/(2) ...

यदि `x = 2at, y = at^(2)`, तो `x = (1)/(2) "पर" (d^(2)y)/(dx^(2))` ज्ञात कीजिए ।

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(x)/(x+2) find (d^2y)/dx^2

If x^(2)+y^(2) =1,then (d^(2)y)/(dx^(2)) =

If y=(1)/(2x^(2)+3x+1) then (d^(2)y)/(dx^(2)) at x=-2

If y=|x-x^(2)|, then find (d^(2)y)/(dx^(2))

If x^(2)+y^(2)=1 then (y'=(dy)/(dx),y''=(d^(2)y)/(dx^(2)))

If (x)/(y)+(y)/(x)=2," then: "(d^(2)y)/(dx^(2))=

If x^(2)+xy-y^(2)=1," then "(x-2y)^(3)(d^(2)y)/(dx^(2))=

If y=sin^(-1)x , show that (1-x^(2))(d^(2)y)/(dx^(2))-xdy/dx=0 .

If y^(3)-y=2x, then (x^(2)-(1)/(27))(d^(2)y)/(dx^(2))+x(dy)/(dx)=

If y= e ^(mcos ^(-1)x) ,then (1-x^(2) ) (d^(2)y)/(dx^(2)) -x(dy)/(dx)=