Home
Class 12
MATHS
if x=2+t^(3),y=3t^(2)" ,then the value ...

`if x=2+t^(3),y=3t^(2)" ,then the value of n for which "(((d^(2)y)/(dx^(2))))/((dy)/(dx))^(n) is constant is `

Promotional Banner

Similar Questions

Explore conceptually related problems

x=2+t^(3),y=3t^(2) ,then the value (dy)/(dx)

If x=sin t and y=sin3t, then the value of k for which (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+ky=0 is

x=2 + t^(3), y= 2t^(2) . If ((d^(2)y)/(dx^(2)))/(((dy)/(dx))^(n)) is constant then n= ………

if y=ae^(x)+be^(-3x)+c , then the value of ((d^(3)y)/(dx^(3))+2(d^(2)y)/(dx^(2)))/((dy)/(dx)) is

if y=ae^(x)+be^(-3x)+c , then the value of ((d^(3)y)/(dx^(3))+2(d^(2)y)/(dx^(2)))/((dy)/(dx)) is

If x=e^(t)sint and y=e^(t)cost , then the value of (x+y)^(2)(d^(2)y)/(dx^(2))-2x(dy)/(dx) is -

If x = 2t^3 and y = 3t^2 , then value of (dy)/(dx) is

If x = 2t^3 and y = 3t^2 , then value of (dy)/(dx) is