Home
Class 12
MATHS
In the Mean Value theorem (f(b)-f(a))/(b...

In the Mean Value theorem `(f(b)-f(a))/(b-a)=f'(c)` if ` a=0 , b =1/2 ` and f(x)=x(x-1)(x-2) the value of c is

Promotional Banner

Similar Questions

Explore conceptually related problems

In the mean value theorem, f(b) - f(a) = (b-a) f(c ) , if a= 4, b = 9 and f(x) = sqrt(x) then the value of c is

In the Mean value theorem f(b)-f(a)=(b-a)f'(c), if a=4, b=9 and f(x)= sqrtx , then the value of c is (A)8.00 (B)5.25 (C)4.00 (D)6.25

In the Mean value theorem f(b)-f(a)=(b-a)f'(c), if a=4, b=9 and f(x)= sqrtx , then the value of c is

In the Mean value theorem f(b)-f(a)=(b-a)f'(c), if a=4, b=9 and f(x)= sqrtx , then the value of c is

In the mean value theorem f(b)-f(a)=(b-a)f'(c )(a lt c lt b) , if a=4, b=9 and f(x)=sqrt(x) , then the value of c is -

Using Largrange's mean value theorem f(b)-f(a)=(b-a)f'(c ) find the value of c, given f(x)=x(x-1)(x-2), a=0 and b=(1)/(2) .

If, from mean value theorem , f(x_1)=(f(b)-f(a))/(b-a), then:

In the mean value theorem f(b)-f(a)=(b-a)f'(c )(a lt c lt b), "if " a=(pi)/(6), b=(5pi)/(6) and f(x) =log(sinx) , then the value of c is -

If, from mean value theorem , f'(x_(1))=(f(b)-f(a))/(b-a), then: