Home
Class 10
MATHS
The roots of the quadratic equation x^2+...

The roots of the quadratic equation `x^2+px+q` is `alpha` and `beta` Then find the value of `(alpha/beta+2)(beta/alpha+2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the quadratic equation x^(2)-6x+1=0, then the value of (alpha^(2))/(beta^(2))+(beta^(2))/(alpha^(2)) is

If alpha and beta are the roots of the quadratic equation ax^(2)+bx+1 , then the value of (1)/(alpha beta)+(alpha+beta) is

Given the alpha + beta are the roots of the quadratic equation px^(2) + qx + 1 = 0 find the value of alpha^(3)beta^(2) + alpha^(2)beta^(3) .

If alpha, beta be the roots of the quadratic equation 3x^(2)-6x+4=0 , find the value of ((alpha)/(beta)+(beta)/(alpha))+2((1)/(alpha)+(1)/(beta))+3alpha beta :

For one quadratic equation alpha^2 + beta^2 =13 " and " alpha beta =6 , then find value of alpha / beta + beta / alpha

If alphaandbeta be the roots of the quadratic equation x^(2)+px+q=0 , then find the quadratic equation whose roots are (alpha-beta)^(2)and(alpha+beta)^(2) .

If alphaandbeta be the roots of the quadratic equation x^(2)+px+q=0 , then find the quadratic equation whose roots are (alpha-beta)^(2)and(alpha+beta)^(2) .