Home
Class 12
MATHS
The function f(x)={x} sin (pi[x]), where...

The function `f(x)={x} sin (pi[x])`, where [.] denotes the greatest integer function and {.} is the fractional part function, is discontinuous at

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) = {x} sin (pi [x]) , where [.] denotes the greatest integer function and {.} is the fraction part function , is discontinuous at

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

The function f(x)=[x]+sqrt({x}), where [.] denotes the greatest Integer function and {.} denotes the fractional part function respectively,is discontinuous at

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

The function f( x ) = [x] + sqrt{{ x}} , where [.] denotes the greatest Integer function and {.} denotes the fractional part function respectively, is discontinuous at