Home
Class 12
MATHS
IF y=xsin(logx)+xlogx, Prove that, x^2...

IF y=xsin(logx)+xlogx, Prove that,
`x^2(d^2y)/(dx^2)-xdy/dx+2y=2xlogx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin(logx) , prove that x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

IF y=xsinx, prove that, x^2(d^2y)/(dx^2)-2xdy/dx+(2+x^2)y=0

If y=sin(logx) prove that x^2(d^2y)/dx^2+xdy/dx+y=0 .

If y="sin"(logx), then prove that (x^2d^2y)/(dx^2)+x(dy)/(dx)+y=0

If y=sin (2sin^-1x) , Prove that, (1-x^2)(d^2y)/(dx^2)=xdy/dx-4y .

If y=x^(n-1)logx , Prove that, x^2(d^2y)/(dx^2)+(3-2n)xdy/dx+(n-1)^2y=0

If y=acos(logx)+bsin(logx), prove that x^2(d^2y)/(dx^2)+\ x(dy)/(dx)+y=0

x(dy)/(dx)+y=xlogx

If y=xlog (x/(a+bx)) , prove that x^3(d^2y)/(dx^2)=(y-xdy/dx)^2 .

If y=Acos(logx)+\ Bsin(logx) , prove that x^2\ (d^2y)/(dx^2)+x(dy)/(dx)+y=0 .