Home
Class 12
MATHS
A square matrix P satisfies P^2 = I- p w...

A square matrix P satisfies `P^2 = I- p` where I is the identity matrix and `p^x = 5 I - 8p` ,then x

Promotional Banner

Similar Questions

Explore conceptually related problems

A square matrix P satisfies P^(2)=I-p where I is the identity matrix and p^(x)=5I-8p, then x

A square matrix P satisfies P^(2)=I-P , where I is identity matrix. If P^(n)=5I-8P , then n is :

A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P^(n)=5I-8P , then n is

A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P^(n)=5I-8P , then n is

A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P^(n)=5I-8P , then n is

A square matrix P satisfies P^2=I-2P where I is the identify matrix if P^(2)+P^(3)+P^(4)=a^(2)I-b^(2)P then a,b=

A square matrix M of order 3 satisfies M^(2)=I-M , where I is an identity matrix of order 3. If M^(n)=5I-8M , then n is equal to _______.

A square matrix M of order 3 satisfies M^(2)=I-M , where I is an identity matrix of order 3. If M^(n)=5I-8M , then n is equal to _______.