Home
Class 12
MATHS
If log2 N=4+b1 and log2 N=2+b2 where b1,...

If `log_2 N=4+b_1 and log_2 N=2+b_2` where `b_1,b_2 in[0,1)`, then largest integral value of `N` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(b)n=2 and log_(n)(2b)=2 , then nb=

Let log_3^N = alpha_1 + beta_1 , log_5^N = alpha_2 + beta_2 , log_7^N = alpha_3 + beta_3 Largest integral value of N if alpha_1 =5 , alpha_2 = 3 and alpha_3=2 and beta_1, beta_2, beta_3=(0,1) (A)342. (D) 242 (C) 243 (B) 343 342 17 Difference of largest and smallest integral values of N if alpha_1 =5 , alpha_2 = 3 and alpha_3=2 and beta_1, beta_2, beta_3=(0,1) (D) 99 (C) 98 (B) 100 (A) 97

If log_(2)N=a and log_(3)N=b, where 2<=b<3 and a=b+1, then the difference between largest and least integral values of Nis equal to

Let log_2N=a_1+b_1,log_3N=a_2+b_2 and log_5N=a_3+b_3 , where a_1,a_2,a_3notin1 and b_1,b_2 b_3notin [0,1) . If a_1=6,a_2=4 and a_3=3 ,the difference of largest and smallest integral values of N, is

Let log_2N=a_1+b_1,log_3N=a_2+b_2 and log_5N=a_3+b_3 , where a_1,a_2,a_3notin1 and b_1,b_2 b_3 in [0,1) . If a_1=6,a_2=4 and a_3=3 ,the difference of largest and smallest integral values of N, is

Let log_2N=a_1+b_1,log_3N=a_2+b_2 and log_5N=a_3+b_3 , where a_1,a_2,a_3notin1 and b_1,b_2 b_3 in [0,1) . If a_1=6,a_2=4 and a_3=3 ,the difference of largest and smallest integral values of N, is

Let log_2N=a_1+b_1,log_3N=a_2+b_2 and log_5N=a_3+b_3 , where a_1,a_2,a_3notin1 and b_1,b_2 b_3 in [0,1) . If a_1=6,a_2=4 and a_3=3 ,the difference of largest and smallest integral values of N, is

If log_(b) n = 2 and log_(n) 2b = 2 , then find the value of b.

If log_(b) n = 2 and log_(n) 2b = 2 , then find the value of b.