Home
Class 12
MATHS
Let F:[3,infty]to[1,infty] be defined by...

Let `F:[3,infty]to[1,infty]` be defined by `f(x)=pi^(x(x-3)`, if `f^(-1)(x)` is inverse of `f(x)` then the number of solution of the equation `f(x)=f^(-1)(x)` are

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=2x+1. AA x , then the solution of the equation f(x)=f^(-1)(x) is

If f:[1,infty) to [1, infty) is defined by f(x) =2^(x(x+1)) then f^(-1)(x) =

Let f(x)=2x+1. AA x in R , then the solution of the equation f(x)=f^(-1)(x) is

Let f:[4, infty) to [1, infty) be a function defined by f(x) = 5^(x(x-4)) , then f^(-1)(x) is

Let f:[4,infty) to [1,infty) be defined by f(x) = 11^(x(4-x)) AA x ge 4 Then f^(-1)(x) is given by

If f:[1,infty) to [2, infty) , defined by f(x) = x+1/x , then find f^(-1)(x) .

If f:[1,infty)rarr[2,infty) is defined as f(x)=x+(1/x) then find f^(-1)(x)

If f: R to [0, infty) defined by f(x) = 10^(x) then f^(-1)(x) =