Home
Class 12
MATHS
For a complex number Z, if |Z-i|le2 and ...

For a complex number Z, if `|Z-i|le2 and Z_(1)=5+3i`, then the maximum value of `|iZ+Z_(1)|` is (where, `i^(2)=-1`)

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-i|<=2 and z_(0)=5+3i, the maximum value of |iz+z_(0)| is

If |z+2i|<=1 and z_(1)=6-3i then the maximum value of |iz+z_(1)-4| is equal to

If |z-i| ≤ 2 and z_0 = 5+3i , the maximum value of |i z + z_0| is

If |z + 2i| le 1 and z_(1) = 6-3i then the maximum value of |iz + z_(1) - 4| is ____

If abs(z-i)le2 and z_0=5+3i then the maximum value of abs(absiz+z_0) is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is