Home
Class 12
MATHS
If in a right angled triangle, a\ a n d\...

If in a right angled triangle, `a\ a n d\ b` are the lengths of sides and `c` is the length of hypotenuse and `c-b!=1,\ c+b!=1` , then show that `(log)_("c"+"b")"a"+(log)_("c"-"b")"a"=2(log)_("c"+"b")adot(log)_("c"-"b")adot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a right angled triangle, a\ a n d\ b are the lengths of sides and c is the length of hypotenuse and c-b!=1,\ c+b!=1 , then show that (log)_("c"+"b")"a"+(log)_("c"-"b")=2(log)_("c"+"b")adot(log)_("c"-"b")adot

If in a right angled triangle, a and b are the lengths of sides and c is the length of hypotenuse and c-b ne 1, c+b ne 1 , then show that log_(c+b)a+log_(c-b)a=2log_(c+b)a.log_(c-b)a.

If in a right angled triangle, a and b are the lengths of sides and c is the length of hypotenuse and c-b ne 1, c+b ne 1 , then show that log_(c+b)a+log_(c-b)a=2log_(c+b)a.log_(c-b)a.

If in a right angle triangle,a and b are the length of the sides and and c is the length of the hypotenuse and c-b!=1,c+b!=1 then show that log_(c+b)(a)+log_(c-b)(a)=2log_(c+b)(a)log_(c-b)(a)

In a right-angled triangle, a and b are the lengths of sides and c is the length of hypotenuse such that c-b ne1,c+b ne 1 . Show that "log"_(c+b)a+"log"_(c-b)a=2"log"_(c+b)a."log_(c-b)a

Given a^2+b^2=c^2, a >0 ; b >0; c >0,\ c-b!=1,\ c+b!=1,\ prove that : (log)_("c"+"b")a+(log)_("c"-"b")a=2(log)_("c"+"b")adot(log)_("c"-"b")a

Given a^2+b^2=c^2& a .0 ; b >0; c >0, c-b!=1, c+b!=1, prove that : (log)_("c"+"b")a+(log)_("c"-"b")a=2(log)_("c"+"b")adot(log)_("c"-"b")a

Given a^2+b^2=c^2&\ a .0 ; b >0; c >0,\ c-b!=1,\ c+b!=1,\ prove that : (log)_("c"+"b")a+(log)_("c"-"b")a=2(log)_("c"+"b")adot(log)_("c"-"b")a

Show that log_(b)a log_(c)b log_(a)c=1