Home
Class 12
MATHS
If f(4)= 4, f'(4) =1 then lim(x to 4) 2(...

If f(4)= 4, f'(4) =1 then `lim_(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(4)=4,f'(4)=1, then lim_(x in4) (2-sqrt(f(x)))/(2-sqrt(x)) is equal to

If f(4)=4 , f'(4)=1 , then find lim_(xrarr4)(2-sqrtf(x))/(2-sqrtx)

If f(2)=2 and f'(2)=1, and then lim_(x to 2) (2x^(2)-4f(x))/(x-2) is equal to

If f(4)=g(4)=2;f'(4)=9;g'(4)=6 then lim_(x rarr4)(sqrt(f(x))-sqrt(g(x)))/(sqrt(x)-2) is equal to

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

If f(9)=9,f'(9)=4 , then evaluate lim_(xto9)(sqrtf(x)-3)/(sqrtx-3) .