Home
Class 12
MATHS
The function sin^(4)x+cos^(4)x is increa...

The function `sin^(4)x+cos^(4)x` is increasing in the interval

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=sin^(4)x+cos^(4)x increasing if

The function f(x)=sin^4x+cos^4x increasing if :

The function f(x)=sin^4x+cos^4x increasing in interval

Show that the function f(x)=sin^(4) x+ cos^(4) x (i) is decreasing in the interval [0,pi/4] . (ii) is increasing in the interval [pi/4,pi/2] .

Show that the function f(x)=sin^(4) x+ cos^(4) x (i) is decreasing in the interval [0,pi/4] . (ii) is increasing in the interval [pi/4,pi/2] .

Show that the function f(x) =sin^(4)x+cos^(4)x is increasing in (pi)/(4) lt x lt (3pi)/(8) .

The function f(x) = sin^(4)x + cos^(4) x increases if

The function f(x)=sin^4x +cos ^4 x increases if

The function f(x)=sin^4x +cos ^4 x increases if

The function f(x) = sin ^(4)x+ cos ^(4)x increases, if