Home
Class 11
MATHS
If x = a cos^(3)(Theta), y = a sin^(3)(T...

If `x = a cos^(3)(Theta), y = a sin^(3)(Theta) find (d^(2)y)/(dx^(2))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = acos^(3)theta , y = a sin^(3)theta ,then find (d^2y)/dx^(2)

If x =a cos ^(3) theta, y= a sin ^(3) theta then (d^(2) y)/( dx ^(2)) at theta = pi //4 is

If x=a cos^(3)theta,y=b sin^(3)theta, find (d^(3)y)/(dx^(3)) at theta=0

If x=a cos^(3)theta,y-b sin^(3)theta, find (d^(3)y)/(dx^(3)) at theta=0

If x=acos^3theta,y=a sin^3theta then find (d^2y)/(dx^(2))

If x=acos^3theta,y=a sin^3theta then find (d^2y)/(dx^(2))

If x=a cos^(2)theta,y=b sin^(2)theta find (d^2y)/dx^2

If x=3cos theta-cos^(3)theta y=3sin theta-sin^(3)theta find (dy)/(dx)

If x = a sin^3 theta, y = a cos^3 theta , find (d^2y)/(dx^2) at theta = pi/4

If x = sin theta, y = sin^(3) theta then (d^(2)y)/(dx^(2)) at theta = (pi)/(2) is …….