Home
Class 11
MATHS
If siny=xsin(a+y), then prove that (dy)/...

If `siny=xsin(a+y)`, then prove that `(dy)/(dx)=(sin^(2)(a+y))/sina, a ne npi`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If siny=xsin(a+y),\ \ prove that (dy)/(dx)=(sin ^2\ (a+y))/(sina)

If sin y = x sin(a+y), than prove that dy/dx=(sin^2(a+y))/sina

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)

If siny=xsin(a+y), prove that (dy)/(dx)= (sin^2(a+y))/(sina) .

If sin y = x sin (a + y) then show that (dy)/(dx)=(sin^2(a+y))/(sina)

If xsin(a+y)+sina cos(a+y)=0 , prove that (dy)/(dx)=sin^2(a+y)/sina