Home
Class 11
MATHS
Prove that (sec^2theta-tantheta)/(sec^2t...

Prove that `(sec^2theta-tantheta)/(sec^2theta+tantheta)` lies between 3 and `1/3`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: (sec^(2)theta-tan theta)/(sec^(2)theta+tan theta) lies between 3 and (1)/(3)

Show that 1/3le(sec^2theta-tantheta)/(sec^2theta+tantheta)le3

Show that (sec^(2)theta-tan theta)/(sec^(2)theta+tan theta) lies between (1)/(3) and 3.

Show that (sec^(2)theta - tan theta)/(sec^(2)+ tan theta) lies between 1/3 and 3 for all real theta .

If y=(sec^(2)theta-tantheta)/(sec^(2)theta+tantheta)' then

If y=(sec^(2)theta-tantheta)/(sec^(2)theta+tantheta)' then

Statement-1: if thetane2npi+(pi)/(2),n inZ, then (sec^(2)theta+tantheta)/(sec^(2)theta-tantheta)"lies between"1/3 and 3. Statement-2: If x inR, then 1/3le(x^(2)-x+1)/(x^(2)+x+1)le3.

Statement-1: if thetane2npi+(pi)/(2),n inZ, then (sec^(2)theta+tantheta)/(sec^(2)theta-tantheta)"lies between"1/3 and 3. Statement-2: If x inR, then 1/3le(x^(2)-x+1)/(x^(2)+x+1)le3.

Prove that (tan^3theta-1)/(tantheta-1)=sec^2theta+tantheta .

Prove: ((1+cot^2theta)tantheta)/(sec^2theta)=cottheta