Home
Class 12
MATHS
lim (x rarr 0) (log(1+x))/x=1...

`lim_ (x rarr 0) (log(1+x))/x=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (log(1+x))/(3^x-1)=1/(log_(e)(3))

Evaluate : lim_(x rarr 0) (log(1+x))/x .

Prove quad that quad (i) lim_(x rarr0)(a^(x)-1)/(x)=log_(e)aquad (ii) lim_(x rarr0)(log_(1+x))/(x)=1

Evaluate the following limit : lim_(x rarr 0)(log(1+x))/(e^x-1) .

lim_(x rarr 0) (log (1+x))/(3^(x) - 1)=

lim_(x rarr0)(log(1+x))/(3^(x)-1)

lim_(x rarr0)(log(1+x))/(3^(x)-1)

Prove that: lim_(x rarr 0) (log(1+x)+sinx)/(e^(x)-1)=2

Evaluate the following limit : lim_(x rarr 0)(log(1+3x))/(3^x-1) .

Prove that lim_(x rarr 0) (log(1+x^3))/(sin^3 x)=1 .