Home
Class 12
MATHS
The value of lim(x to 0) (27^(x)-9^(x)-...

The value of `lim_(x to 0) (27^(x)-9^(x)-3^(x)+1)/(log_(e)(1+(x^(2))/(2)))` is equal to -

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^(2))/(3))) equals

The value of lim_(x rarr0^(+))(e^(x^(x)-1)-x^(x))/(((x^(2))^(x)-1)^(2)) is equal to

The value of lim_(x to 0) ((1+x+x^2)-e^x)/x^2 is equal to

The value of lim_(x rarr0)((4^(x)-1)^(3))/(sin backslash(x)/(4)*log(1+(x^(2))/(3))) equals

Evaluate : lim_(x to 0) (27^x-9^x-3^x+1)/(sqrt2-sqrt(1+cosx))

The value of lim_(xto 0)(log(1+2x))/(x) is equal to

lim_(x rarr 0) (log(1+x))/(3^x-1)=1/(log_(e)(3))

lim_(x rarr0)(log_(e)(1+x))/(x)