Home
Class 12
MATHS
Let lim(x->0)([x]^2)/(x^2)=l and lim(...

Let `lim_(x->0)([x]^2)/(x^2)=l and lim_(x->0)([x^2])/(x^2)=m ,` where `[dot]` denotes greatest integer. Then (a)`l` exists but `m` does not (b)`m` exists but `l` does not (c)both l and m exist (d) neither `lnorm` exists

Promotional Banner

Similar Questions

Explore conceptually related problems

Let lim_(x->0)([x]^2)/(x^2)=l and lim_(x->0)([x^2])/(x^2)=m , where [dot] denotes greatest integer. Then (a) l exists but m does not (b) m exists but l does not (c)both l and m exist (d) neither l nor m exists

Let lim_(x rarr0)([x]^(2))/(x^(2))=l and lim_(x rarr0)([x^(2)])/(x^(2))=m where [.] denotes greatest integer.Then (a)l exists but m does not (b) m exists but l does not (c)both 1 and m exist (d) neither ln or m exists

Let lim_(xto0) ([x]^(2))/(x^(2))=m, where [.] denotes greatest integer. Then, m equals to

Let Lim_(x rarr1)([x])/(x)=l and lim_(x rarr1)(x)/([x])=m where [ .] denotes the greatest integer function, then

let l=lim_(x rarr2)([x])/({x}) and m=lim_(x rarr2)({x})/([x])

Consider the function f(x) =[(1-x,0 leq x leq 1),(x+ 2, 1 lt x lt 2),(4-x,2 leqxleq4)). Let lim_(x->1) f(f(x))= l and lim_(x->1) f(f(x))=m then which one of the following hold good ? (A) l exist but m does not (B) m exist but l does not (C) both exist (D) both does not exist

If l=lim_(xto1^(+))2^(-2^(1/(1-x))) and m=lim_(xto1^(+))(x sin (x-[x]))/(x-1) (where [.] denotes greatest integer function). Then (l+m) is ………….

If l=lim_(xto1^(+))2^(-2^(1/(1-x))) and m=lim_(xto1^(+))(x sin (x-[x]))/(x-1) (where [.] denotes greatest integer function). Then (l+m) is ………….

If l=lim_(xto1^(+))2^(-2^(1/(1-x))) and m=lim_(xto1^(+))(x sin (x-[x]))/(x-1) (where [.] denotes greatest integer function). Then (l+m) is ………….

Let lim_(xto0) ([x]^(2))/(x^(2))=m, where [.] denotes greatest integer. Then, m equals to a. -(1)/(sqrt(2)) b. (1)/(sqrt(2)) c. sqrt(2) d. Limit doesn't exist