Home
Class 12
MATHS
Given a parallelogram ABCD. If |vec(AB)|...

Given a parallelogram `ABCD`. If `|vec(AB)|=a, |vec(AD)| = b & |vec(AC)| = c` , then ` vec(DB) . vec(AB)` has the value

Promotional Banner

Similar Questions

Explore conceptually related problems

Given a parallelogram ABCD. If |vec AB|=a,|vec AD|=b&|vec AC|=c, then vec DB*vec AB has the value

In a parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC)

Consider the parallelogram ABCD .Find vec(AB) and vec(AD)

A parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC) '

ABCD is a parallelogram . If vec(AB)=vec(a), vec(BC)=vec(b) , then what vec(BD) equal to ?

If ABCD is a parallelogram then vec(AB) + vec(AD) + vec(CB) + vec(CD) = …………………… .

vec(AC) and vec(BD) are the diagonals of a parallelogram ABCD. Prove that (i) vec(AC) + vec(BD) - 2 vec(BC) (ii) vec(AC) - vec(BD) - 2vec(AB)

If vec(a)=vec(OA) " and " vec(b)=vec(AB), " then " vec(a)+vec(b) is -

Let ABCD be a parallelogram such that vec(AB)= vec(q), vec(AD) = vec(P) and angleBAD be an acute angle. If vec(r) is the vector that coincides with the altitude directed from the vertex B to the side AD, then vec(r) is given by-

If ABCD is a parallelogram, then vec(AC) - vec(BD) =