Home
Class 12
MATHS
If f(x) = 3x + 1 and g(x) = x^(2) - 1, t...

If f(x) = 3x + 1 and g(x) `= x^(2) - 1`, then (f + g) (x) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = 3x + 5 and g(x) = x^(2) - 1 , then (fog) (x^(2) - 1) is equal to

If f (x) = 3x -1, g (x) =x ^(2) + 1 then f [g (x)]=

If f (x) = 3x -1, g (x) =x ^(2) + 1 then f [g (x)]=

If f(x)=|x-1|" and "g(x)=f(f(f(x))) , then for xgt2,g'(x) is equal to

If f(x)=|x-1|" and "g(x)=f(f(f(x))) , then for xgt2,g'(x) is equal to

If f(x) = x+1 And g (X) = 2x, then f (g(x)) is equal to

If f(x)=x+tan x and g(x) is inverse of f(x) then g'(x) is equal to (1)(1)/(1+(g(x)-x)^(2))(2)(1)/(1-(g(x)-x)^(2))(1)/(2+(g(x)-x)^(2))(4)(1)/(2-(g(x)-x)^(2))