Home
Class 12
MATHS
If (x^(4)+2x i)-(3x^(2)+yi)=(3-5i)+(1+2y...

If `(x^(4)+2x i)-(3x^(2)+yi)=(3-5i)+(1+2yi)`
then the number of ordersed pairs (x, y) is/are equal to
`{AA x,y in R and i^(2)=-1}`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x^(4)+2x i)-(3x^(2)+yi)=(3-5i)+(1+2yi) then the number of ordered pairs (x, y) is/are equal to {AA x,y in R and i^(2)=-1}

If (x^(4)+2x i)-(3x^(2)+yi)=(3-5i)+(1+2yi) then the number of ordered pairs (x, y) is/are equal to {AA x,y in R and i^(2)=-1}

If (x^(4)+2x.i )-(3x^(2)-iy)=(3-5i)+(1+2iy) then find the real value of x and y.

Find x and y if (x^(4)+2xi)-(3x^(2)+yi)=(3-5i)+(1+2yi)

If Z=x^(2)-7x-9yi such that bar(Z)=y^(2)i+20i-12 then the number of order pair (x,y) is :

Find x and y if (x^4+2x i)-(3x^2+y i)=(3-5i)+(1+2y i)

If Z = x^2 - 7x - 9yi such that bar Z = y^2 i + 20i - 12 then the number of order pair (x,y) is :

Find the values of x and y , if 2 x + 3yi = 2+ 12i , where x, y in R

Find the values of x and y , if 2 x + 3yi = 2+ 12i , where x, y in R