Home
Class 12
PHYSICS
A particle moving in a straight line has...

A particle moving in a straight line has its velocit varying with time according to relation `v = t^(2) - 6t +8 (m//s)` where t is in seconds. The CORRECT statement(s) about motion of this particle is/are:-

Promotional Banner

Similar Questions

Explore conceptually related problems

A particle is moving on a straight line with velocity (v) as a function of time (t) according to relation v = (5t^(2) - 3t + 2)m//s . Now give the answer of following questions : Acceleration of particle at the end of 3^(rd) second of motion is :

A particle is moving on a straight line with velocity (v) as a function of time (t) according to relation v = (5t^(2) - 3t + 2)m//s . Now give the answer of following questions : Acceleration of particle at the end of 3^(rd) second of motion is :

A particle is moving on a straight line with velocity (v) as a function of time (t) according to relation v = (5t^(2) - 3t + 2)m//s . Now give the answer of following questions : Velocity of particle at t = 3 sec. is :

A particle is moving on a straight line with velocity (v) as a function of time (t) according to relation v = (5t^(2) - 3t + 2)m//s . Now give the answer of following questions : Velocity of particle at t = 3 sec. is :

A particle starts moving rectilinearly at time t=0 such that its velocity v changes with time t according to the equation v=t^(2)-t , where t is in seconds and v in s^(-1) . Find the time interval for which the particle retards.

A particle starts moving rectilinearly at time t=0 such that its velocity v changes with time t according to the equation v=t^(2)-t , where t is in seconds and v in s^(-1) . Find the time interval for which the particle retards.

A particle moves in a straight line and its velocity v (in cm/s ) at time t (in second ) is 6t^(2) - 2t^(3) , find its acceleration at the end of 4 seconds.

A particle starts from rest, moving in a straight line with a time varying acceleration ( "in"m//s^(2) ): a= 30 -(15)/(2) sqrt(t) , where time is in seconds . The displacement of the particle in 4 seconds is .

A particle starts from rest, moving in a straight line with a time varying acceleration ( "in"m//s^(2) ): a= 30 -(15)/(2) sqrt(t) , where time is in seconds . The displacement of the particle in 4 seconds is .