Home
Class 12
MATHS
Let (vec a+vec b)*(vec a-b)=3 where |vec...

Let `(vec a+vec b)*(vec a-b)=3` where `|vec b|=1` and `vec a*vec b=(3)/(2)` then the angle between `(vec a+2vec b)` and `vec a` is

Promotional Banner

Similar Questions

Explore conceptually related problems

I|vec a|=sqrt(3)|vec b|=2 and vec a*vec b=sqrt(3), find the angle between vec a and vec b

If |vec a|=8,|vec b|=3 and |vec axvec b|=12, find the angle between vec a and vec b.

If |vec a|+|vec b|=|vec c| and vec a+vec b=vec c, then find the angle between vec a and vec b

If |vec a|=3,|vec b|=5,|vec c|=7 and vec a+vec b+vec c=0 then angle between vec a and vec b is

If vec a and vec b are two vectors such that |vec a|=4,|vec b|=3 and vec a*vec b=6. Find the angle between vec a and vec b

vec b,vec c are unit vectors and |vec a|=7vec a xx(vec b xxvec c)+vec b xx(vec c xxvec a)=(1)/(2)vec a then the angle between vec a and vec a is

Let vec a and vec b be unequal unit vectors such that vec a*((vec a-vec b)times(3vec a-4vec b))=vec a+vec b then the angle between vec a&vec b is

If vec(a) and vec(b) are vectors such that |vec(a)|=sqrt(3), |vec(b)|=2 and vec(a).vec(b)=sqrt(6) then the angle between vec(a) and vec(b) is

If vec a and vec b are two vectors such that |vec a|=4,|vec b|=3 and vec avec b=6. Find the angle between vec a and vec b

If angle between vec a and vec b is pi/3 then angle between vec a and -2vec b is: