Home
Class 11
MATHS
Period of the function f(x) =(1)/(3){sin...

Period of the function `f(x) =(1)/(3){sin 3x + |sin 3x | + [sin 3x]}` is (where [.] denotes the greatest integer function )

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

Number of solutions of sin x=[x] where [.] denotes the greatest integer function is

lim_(x -> 0)[sin[x-3]/([x-3])] where [.] denotes greatest integer function is

The number of integers in the range of function f(x)=[sin x]+[cos x]+[sin x+cos x] is (where [.]= denotes greatest integer function)

The range of f(x)=[sin{x}], where [x] denotes greatest integer function

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

The period of the function f(x)=|sin 3x|+| cos 3x| , is

If f(x)=cos|x|+[|(sin x)/(2)|], ,(where [.] denotes the greatest integer function),then f(x) is

Find the Range of function f(x) = [|sin x| + |cosx |] , where [.] denotes are greatest integer function , is :