Home
Class 11
MATHS
यदि f एक फलां इस प्रकार है कि f(-x)=-f(x...

यदि f एक फलां इस प्रकार है कि `f(-x)=-f(x)` तथा `lim_(xto0)f(x)` का अस्तित्व है तब सिद्ध कीजिए कि `lim_(xto0)f(x)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

यदि f' (a) विधमान है तब lim_(x to a) (x f(a)-a f(x))/(x-a)=

If Lim_(xto0)(1+x+(f(x))/x)^(1//x)=e^(3) , then show that Lim_(xto0)(f(x))/x^(2)=2 .

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.

Sketch the graph of a function f that satisfies the given values: f(0) is underfined lim_(xto0)f(x)=4 , f(2) = 6, lim_(xto2)f(x)=3

If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.

If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.